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CEMM Objectives:
“… to developand deploypredictive computational models for

the study of low frequency, long wavelength fluid-like
dynamics in the diverse geometries of modern magnetic
fusion devices.”

• Improved physics models and better resolution
• Large scale instabilities –not turbulence.
• Toroidal devices…tokamak, stellarator, FRC, RFP,…

NIMROD andM3D codes form basis: build on these assets
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The computational challenges:

• temporal stiffness, ormultiplicity of time scales,

• large differences inspatial scales lengths
– internal reconnection layers develop with steep gradients

– typical reconnection length scale

• anisotropyintroduced by the strong magnetic field
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Single
Fluid

Resistive
MHD

Two Fluid
MHD

(electrons
and ions)

Two Fluid
MHD plus
energetic

gyro-
particles

Gyro-
particle
ions and

fluid
electrons

Full orbit
particle
ions and

fluid
electrons

Less complex model, valid
for high-collisionality, strong
fields, long times

More computationally
demanding. Required to

describe many important but
subtle phenomena.

External
kink
modes

Neoclassical
tearing mode
(including
rotation)

m =1 mode

MHD modes
destabilized
by wave-
particle
resonance
with energetic
species

Kinetic
stabilization
of internal
MHD modes
by ions

Tilting and
interchange
modes in
FRC

Several variations of the Extended-MHD model exist.
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Plasma Models: XMHD
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Two-fluid XMHD : defineclosurerelations forΠΠΠΠi ,ΠΠΠΠe, qi, qe

Hybrid particle/fluid XMHD : model ions withkinetic
equations, electrons either fluid or by drift-kinetic equation



9

( )1
i e

B
E

t

E V B J J B p
ne

J B

η

∂ = −∇×
∂

+ × = + × −∇

= ∇×

�

�

� � � � � �

� �

( )( )i
i i

V
V V V P J B

t
ρ ∗

 ∂ + − ∇ + ∇ = × ∂ 

�

� � � � �

i

2
* i

e i

V B p enB

P p p

≡ ×∇
= +

� �

“Hall Term” in Ohm’s
Law brings in essential
new physics in 2-fluid
equations

Simplest 2-fluid Closure for ions and electrons
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2-fluid zero-pressure dispersion relation:

the Hall modified fast wave (+) and shear Alfven wave (-) are given by:
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ω2/ VA
2 for Fast Wave with (VA

2/Ω2=0)
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m=1 mode (sawtooth) in tokamak
is high priority objective

•caused by tendency of
plasma current to peak in
center and become unstable

• involves reconnection layer,
2-fluid, hot-particles

• better predictive model of
m=1 mode is needed for next
step tokamak burning plasma

• benign self-regulating event
or plasma termination?

Park and Klasky

Shown are constant pressure
surfaces and some magnetic
field lines
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Hot inner region interchanges with colder
outer region via magnetic reconnection
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m=1 mode can also destablize
short wavelength modes and lead
to plasma termination

• If plasma pressure is already high
and near stability limit, m=1 helical
distortion can make it locally
unstable to pressure-driven-modes

• These modes steepen nonlinearly
in a ribbon like structure driving
field line stochasticity and leading
to plasma termination.

• The plasma termination event in
the record making 10 MW fusion
power DT TFTR discharge has
been explained by this mechanism
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Quasi-Axisymmetric
Stellarator NCSX now being
designed

• Stellarator has “twisted” outer surface formed by 3D coil
set…does not need to carry net plasma current like tokamak

• No sawtooth modes…but instabilities can be excited when
the pressure locally exceeds stability limit

• Instabilities cause high pressure areas to further steepen
nonlinearly …consequence ?
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Spontaneous development of
Magnetic Islands (tearing modes)

• “neo-classical tearing modes” driven by small differences
in the plasma current-carrying capability inside the islands

• comparing results 3 different fluid closures with exp. data

NIMROD
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• Variable resolution grid allows resolution of disparate space scales.

• note: cyan: flux purple: current

Model 2D problem: merging spheromaks
with 2-fluid MHD equations, high-resolution

Breslau
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χ = 0 (resistive MHD) χ = 0.2 (2-fluid MHD)

More complete physics (two-fluid) can change
he qualitative nature of the reconnection physics

reconnection rate with 2-fluid MHD (χ > 0) can increase
reconnection rate by order of magnitude..or more!
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Typical M3D Mesh
in Poloidal Plane

• Unstructured

• Not adaptive
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NIMROD:
• strongly implicit (Krylov)
• uses B and V
• triangular and quad finite
elements in poloidal plane
• domain decompositon in
poloidal plane using MPI
• pseudo-spectral (FFT) in
toroidal direction
• scales good on 256-512
processors on T3E & SP2
• resistive MHD, two-fluid
(Hall term) & hybrid/particles

M3D
• quasi-implicit (Krylov)
• stream function/ potential
• triangular finite elements in
poloidal plane
• domain decomposition in
poloidal plane using MPI
• Finite difference in toroidal
direction
• scales good on 256-512
processors on T3E & SP2
• resistive MHD, two-fluid
(Hall term) & hybrid/particles
• uses PETSC framework

APDEC Activity:
• adaptive mesh
• structured mesh with
embedded boundary
• evaluate generalized
upwind FD methods

Must eventually dea
with
• partially implicit solve
• Hall term in Ohm’s law
• Anisotropic heat
conduction
• hybrid particle/fluid
description
• must interface with
existing code(s)

Relation of APDEC Activity to Baseline
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Computer Science Enabling
Technology Partners
• Terascale Simulation Tools and Technologies

(TSTT) PI: James Glimm
• Terascale Optimal PDE Simulations Center

(TOPS) PI: David Keyes
• An Algorithmic and Software Framework for

Applied Partial Differential Equations
PI: Phil Collela

• National Fusion Collaboratory Pilot project
PI: David Schissel

NOTE: also collaborations with major fusion experiments
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Terascale Simulation Tools and
Technology (TSTT)

• Incorporation of “standard” grid generation and
discretization libraries into M3D (and possibly NIMROD)

• Higher order and mixed type elements
• Explore combining potential and field advance equations
• Prof. Glimmvisited PPPL in February
• Mark Shephard(Director of Renssalaer Scientific

Computation Research Center),Joe Flaherty(now Dean of
RPI School of Science), andJean-Francois(RPI RA with
MHD and fusion interest and experience) to visit PPPL
Aug 6

• Tim Tautges(SNL/U.Wisconsin) participated in CEMM
meeting Aug 1 in Madison
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Terascale Optimal PDE
Simulations (TOPS) Collaboration

• Extend the sparse matrix solvers in PETSc in several ways
that will improve the efficiency of M3D
– Develop multilevel solvers for stiff PDE systems
– Addition of nonlinear Schwarz domain decomposition
– Refinements in implementation to improve cache utilization

• David KeyesandBarry Smithprimary contacts
• Keyesvisited Princeton on June 6
• M3D team visitedSmithat Argonne in January
• Jardinon TOPS “Advisory Council”
• Jardinto attend briefing on CEMM at Aug 20 meeting in

Argonne
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An Algorithmic and Software
Framework for Applied Partial
Differential Equations

• Implement and evaluate adaptive mesh refinement (AMR)
for reconnection and localized instability growth

• Phil Colella, Project leader,
visited PPPL in Spring

• Focus on adaptive mesh
refinement

• Fusion one of three project areas
• New PPPL hire (with MICS

SciDAC funds) from Cal Tech.
CFD ASCI center

• Jardinon PAC
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Fusion Collaboratory

• Develop more efficient integration of experiment and
modeling

• Easier access to simulation codes

• Enhancements in communication capabilities for shared
code development projects

• Scientific visualization, access grid, display wall

• D. Schissel, project director, also part of CEMM

• C. Sovinec(UW/NIMROD/CEMM) on oversight
committee
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